1. Detail of Unit Revision

Subject Name	Physics	
Course Name	Physics 02 (Physics Part-2, Class XI)	
Module Name/Title	Unit 9:Behaviour of perfect gases and kinetic theory of gases_Revision	
Objectives	 After going through this lesson, the learners will be able to understand How to plan for study How to consolidate the unit 	
Keywords	Ideal gas, real gas, pressure, mean free path, rms speed, degree of freedom etc.	

2. Development Team

Role	Name	Affiliation
National MOOC	Prof. Amarendra P. Behera	Central Institute of Educational
Coordinator		Technology, NCERT, New Delhi
(NMC)		
Programme	Dr. Mohd. Mamur Ali	Central Institute of Educational
Coordinator		Technology, NCERT, New Delhi
Course	Anuradha Mathur	Central Institute of Educational
Coordinator / PI		Technology, NCERT, New Delhi
Teaching	Chinty Chhawari	Central Institute of Educational
Assistants		Technology, NCERT, New Delhi
	Shivam Dixit	Central Institute of Educational
		Technology, NCERT, New Delhi

Physics 2019Physics-02 (Unit 8: Behaviour of perfect gases and kinetic theory of gases)

Study Guide

Kinetic Theory of Gases

First of all, read each part of the syllabus

Behaviour of Perfect Gases and Kinetic Theory of Gases:

Equation of state of a **perfect** gas (What is a perfect gas? ideal gas? Why are these terms important?)

Work done in compressing a gas: (Why should work be done on the gas? Can gas do work?)

Kinetic theory of gases - assumptions,

Concept of pressure: (Pressure exerted by a gas on the walls of a container, so our consideration is for enclosed mass of gas)

Kinetic interpretation of temperature; (temperature and kinetic energy are related and this concept addresses it beautifully, you need to read the e-text slowly and understand it. It is significant to get a good grip on the concept)

rms speed of gas molecules; (rms speed-if all molecules were to move with rms speed the net kinetic energy of the enclosed gas would remain the same, as it is, with a wide distribution of kinetic energy of individual molecules)

Degrees of freedom, watch the video for clarity

Law of equi-partition of energy (statement only)

Application to specific heat capacities of gases;

Concept of mean free path,

Avogadro's number

Most of the syllabus requires a high extent of imagination, so relax and understand it, it is ok if the concepts do not look easy for the first time, once you get them right it is a great feeling, so be patient and do it

Suggestions to study the unit

- Read the gas laws Boyle's, Charles's law, pressure law, Dalton's law of partial pressure.
- Understand the ideal gas equation PV= nRT
- Understand relation between Boltzmann's constant (k), gas constant (R) and Avogadro number (N)
- Study the assumptions
- Draw the diagram, and write each step for derivation of pressure exerted by the gas molecules on the walls of the container.

- Use the result and apply it for gas laws
- Derive kinetic energy per molecule and kinetic energy per degree of freedom as $\frac{1}{2}$ KT
- Use the concepts to interpret specific heat of gases, C_{p} and C_{v}

Next do problems and answer questions on the unit